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Threshold values for the onset of Bénard-Marangoni convection and the critical dimensionless wave number
which characterizes the size of the cells in a liquid layer heated from below are obtained by using linear
perturbation techniques. The regions of instability in the three-dimensional space of the Marangoni, Rayleigh,
and Biot numbers are determined for the coupled thermocapillary-buoyancy instability problem.

PACS number(s): 47.20.Dr, 47.20.Bp, 44.90.+c

The convective instability and the spontaneous formation
of cell patterns in a fluid are important problems in physio-
chemical hydrodynamics, heat and mass transport, and the
theory of self-organization in open systems. Bénard-
Marangoni convection, named after Bénard’s experiments
[1,2] and the Marangoni effect [3,4], is one of the best
known examples of these phenomena. To explain the origin
of Bénard cells in a horizontal layer of fluid heated from
below, Lord Rayleigh [5] developed his classical stability
analysis of convection flow correlating the nature of pattern
formation with the buoyancy effect. Block [6] and Pearson
[7] proposed another mechanism of the formation of Bénard
cells in a thin liquid film. According to their approach, the
driving force of the convection is not buoyancy, but rather
temperature-induced gradients in surface tension, i.e., the
thermocapillary Marangoni effect. We know now that in the
general case of arbitrary film thickness the mechanism of
convection is mixed and involves the coupled
thermocapillary-buoyancy instability. The surface-tension-
drive effect (Marangoni instability) is dominant in thin layers
less than 1 mm thick and the buoyancy effect (Rayleigh in-
stability) predominates in layers about 1 cm and more.

In our work physical results are presented for the suffi-
cient conditions for the onset of thermocapillary and coupled
thermocapillary-buoyancy convection in a horizontal liquid
layer with a nondeformable interface. Comparison with Pear-
son results are made for the “conducting” case [7] when the
lower surface is a fixed-temperature boundary. We reveal the
nonmonotonic dependence of the Marangoni number on the
Biot number which has an extremum and is different from
the correlation between the basic dimensionless parameters
in Pearson’s model.

The problem to be analyzed involves a horizontal liquid
layer, of thickness %, heated from below and open to an
ambient gas. The layer is assumed to be of infinite extent in
the directions of the x and y axes, its upper free surface
(z=h) is nondeformable whereas the bottom boundary is
rigid (z=0). All physical properties of the liquid and the
gas, except for surface tension, are assumed to be constant.
The temperature at the bottom has a constant value 7, and
the heat balance at the upper surface (z=0) is described by
Newton’s law

—kdT/9z=r(T—T,) (1)
where T is the temperature, T is the temperature in the bulk
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of the gas phase for which the heat flux to the upper envi-
ronment vanishes, « is the thermal diffusivity of the liquid,
and r is the heat transfer coefficient characterizing the heat
removal from the free surface to the upper environment.
For the unperturbed motionless state the velocity vector
v=0, and the temperature distribution has a linear profile
according to Fourier’s law
T=Ty—Bz, B=r(To—T))/(k+rh). )
Applying linear perturbation techniques to the equations

of fluid motion and convective heat conduction we reduce
them to

vV —0V2u/ot=0, 3)
kV2T' =T /9t + Bu=0, )

where V2= 0%/9x*+ 8*/dy>+ 3%/ 9z, u is the velocity in the
z direction, T'=T —T is the temperature perturbation, ¢ is
the time, and v is the kinematic viscosity of the fluid.

The boundary conditions at upper and lower boundaries
are

u=0, pv&zu/c?zz=aV%T’at z=h, (5)

u=20u/dz=0, T’ =0 at z=0, 6) .

where
a=—(90/3T) y;=p)

Vi=0%/dx>+ 3*/dy?, p is the density of the fluid, o is the
surface tension, and « is the constant variation of surface
tension with respect to temperature. The relation (5) allows
for the thermocapillary Marangoni effect and follows from
the equality of the tangential component of the viscous stress
tensor and the stress due to the surface tension gradient. The
effect of surface tension on the normal stress condition is
neglected.

As new dimensionless variables we choose x*=x/h,
y*=y/h, z*=z/h, and t*=tk/h? (further omitting the as-
terisks), and we also introduce two dimensionless groups
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a(Ty—Ty)h Ma
a= a(To=T)h (Marangoni number), N
pvK 400
rh .
Bi= - (Biot number). (7)

The Marangoni number Ma characterizes the ratio of the
force induced by the surface tension gradient to the force
related to viscous dissipation, and the Biot number Bi char-
acterizes the ratio of the rate of heat removal from the inter-
face to the environment to the rate of heat supply to the
interface from the bulk of a liquid due to thermal conduction.

We consider an arbitrary disturbance and present the
small perturbation u and 7’ in the following forms:

u=—(k/h)U(z)exp(ikx+ik,y+ wt), (8)
T'=BhO(z)exp(ik,x +ik,y+ wt), 9)

where k=(kf+k§) 122 is the dimensionless wave number of
the perturbations, and w is the complex growth rate. Insert-
ing Egs. (3) and (4), we obtain a set of two ordinary differ-
ential equations, from which we find the functions U(z) and
®(z) containing six constants. To determine these constants,
we use the boundary conditions in (1), (5), and (6) and obtain
a uniform set of six algebraic equations relative to six un-
knowns having a nontrivial solution provided its characteris-
tic determinant equals zero. From the characteristic equation
for the eigenvalue problem we find the relation between the
parameters Ma, Bi, k, and w.

For the case of marginal stability (w=0) we obtain the
relation

__ 4k(Bi+1)(Bi sinhk + k coshk)(sinh2k —2k)
B Bi(sinh’k — k3coshk) )
(10)

a

Equation (10) allows one to investigate the dependence of
the Marangoni number on the wave number for different
values of the Biot number and to plot neutral stability curves,
which separate the stability region (real part of ®<<0) under
the curve and the instability region (real part of w>0) above
the curve. We fix the values of Bi and then minimize Ma as
a function of £ to obtain the critical Marangoni number
Ma,,. All neutral stability curves have a minimum for any
given value of the Biot number. The global minimum
Ma,, =ming;(minMa) determines the threshold values for the
onset of instability and the critical wave number

Ma,=222.54, k,=2.33 for Bi=1.54. (11)

Figure 1 illustrates the correlation between the critical
Marangoni number and the Biot number. The extremal char-
acter of this locus, which has Ma=Ma ,,, can be attributed to
the following physical reasons.

Increase in Bi from 0 to  means a change in the thermal
condition at the upper surface from ““adiabatic” to ““conduct-
ing.” For a fixed temperature of the bottom a decrease in the
Biot number and accordingly in the rate of heat removal
from the upper surface to the environment leads to a decrease
in the vertical thermal gradient and in the heat flux across the
liquid layer. Therefore, the surface activity « and the Ma-
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FIG. 1. The critical Marangoni number versus the Biot number
for thermocapillary convection.

rangoni number, which are required for perturbation growth,
have to increase by approaching the adiabatic condition at
the free surface. In the limit, as Bi— 0, the temperature in the
layer is equalized in the z direction, and the steady state
T=T, becomes stable and Ma ,— .

For the opposite case of a large Biot number, when the
free surface is a good heat conductor, all temperature varia-
tions along the surface attenuate fast and the local tangential
stresses related to surface tension are, therefore, small. Thus,
in the limit Bi—oo the disturbance temperature gradients,
which are the driving force for surface-tension-driven insta-
bility, vanish and no Marangoni convection can arise.

It is well known that the thermocapillary effect plays. a
dominant role in the development of natural convection in a
fluid under microgravity and also on Earth in a thin liquid
film. For layers more than 1 mm thick it is required to take
into account both the motion caused by temperature-induced
surface tension gradients and the buoyancy-driven convec-
tion flow in the gravitational field.

To consider the coupled thermocapillary-buoyancy insta-
bility problem, we use the Oberbeck-Boussinesq approxima-
tion [8] and then substitute the equation of motion involving
the linear dependence of the density on the temperature for
Eq. (3),

vV4u—9gV2u/ot+gyV3iT =0, (12)

where g is the gravitational acceleration, and v is the coef-
ficient of volume expansion.
We introduce the Rayleigh number as

3
VK

and analyze the linear stability problem (1), (2), (4), (5), (6),
and (12). Following a calculation scheme similar to that in
Ref. [9], we obtain the eigenvalue equation for the case of
the marginal stability (w=0)

det(Al]):O) i’ j:laza (14)

oo

Ap=2 aml, Ay=2 (—1)am,

n=1 n=1



53 INSTABILITY THRESHOLD IN THE BENARD-MARANGONI PROBLEM

250

150

50

FIG. 2. Neutral stability surface in the space of Marangoni,
Rayleigh, and Biot numbers for coupled thermocapillary-buoyancy
convection.

o0

Ap=bk*Ma Y, (—1)"am(l+1),
n=1

o

Ap=—4(Bi+1)+k*MaY, a[b(m+Ra)—I?],
n=1

a=(P—bk’Ra)”!, b=Bi/(Bit1l), I=(mwn)>+k?

m=(mn)>.

Equation (14) involves the relationship between the basic
dimensionless parameters—the Marangoni, Rayleigh, and
Biot numbers—and the dimensionless wave number k. Us-
ing the described procedure of minimization with respect to
k we obtain the dependencies of the critical Marangoni num-
ber Ma_ =min;Ma(k) and critical Rayleigh number
Ra.=mingRa(k) on the Biot number. The results of the nu-
merical solution of the neutral stability state equation (14)
are shown in Fig. 2 as the locus in the three-dimensional
space (Ma, Ra, Bi). The most interesting feature of Fig. 2 is
that two-dimensional boundaries between stability and insta-
bility regions Ma .(Bi) and Ra(Bi) have local minima. We
find that Ma(Bi)—Ma,~222 if Ra—0, Bi—1.54 and
Ra(Bi)—Ra,~1100 if Ma—0, Bi—o. Here Ma,, is the
instability threshold for pure thermocapillary convection and
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Ra  is the well-known critical value for Rayleigh convection
in a liquid layer with rigid-free boundaries [10].

Let us compare our results with the data in the pioneering
work of Pearson [7], who first suggested the model for
surface-tension-driven instability in a horizontal layer of a
fluid heated from below. This work initiated most of the
subsequent investigations on thermocapillary convection.
The basic dimensionless parameters introduced by Pearson
are B=aBh*/pvk and L =qh/\ where B is the temperature
gradient for the unperturbed state, g is the rate of change
with the temperature of the time rate of heat loss per unit
area from the upper surface, and N is the coefficient of heat
conduction in the liquid. Note that the parameter L is equal
to the Biot number introduced above. Two independent
parameters Ty and B determine the unperturbed tempera-
ture profile for the “conducting” case in Ref. [7], p. 491,
but the conditions for the onset of thermocapillary convec-
tion depend only on the parameter (3. Pearson used the
different boundary conditions at the free surface (z=0):
—9T/dz=pPB=const is for the unperturbed state and
—NJdT/3z=qT is for the perturbed state. As a result, it was
obtained that the correlation between B and L has a monoto-
nously increasing character and is close to linear. The limit
L=0 or Bi = 0 corresponds to zero temperature gradient,
B—0 if L—0. In this case, as was described above, the
thermocapillary convection cannot originate and the instabil-
ity threshold, as physical value, should go into infinity, that
is, Ma_,—> if Bi—0. On the other hand, the instability
threshold in [7] corresponded to the finite critical value
B.~80 if L=0. If the boundary condition (1) had been ap-
plied to both the unperturbed and the perturbed state within
Pearson’s model, the parameter 8 would have been unam-
biguously determined by parameters T, «, N, ¢, and & and
would have been equal to 8= (Ty/h)L/(L+ 1). Therefore,
the parameter B, a priori, would be a function of the param-
eter L and they should not be considered as independent
numbers. Due to the above reasons, instead of B, it is pref-
erable to introduce the Marangoni number according to (7) in
the case of a fixed temperature at the lower surface. This case
corresponds to the conditions for numerous experiments on
Bénard convection [10,11].

Finally, note that the results obtained here and the physi-
cal conclusions drawn are easily transferable to solutocapil-
lary convection [12] which takes place in mass transport due
to diffusion and when the surface tension depends on the
concentration of the solute.
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